
Supplementary Material:
Mobile Mechatronic/ Robotic Orthotic Devices to
Assist–Rehabilitate Neuromotor Impairments in the
Upper Limb: A Systematic and Synthetic Review

APPENDIX 1 PEDRO INSPIRED SCORE FOR THE SELECTED ARTICLES –
SORTED CHRONOLOGICALLY BY THEIR DATE OF PUBLICATION

No Article No of No of No of Q1 Q2 Q3 Q4 PEDro
healthy patients citations score
subjects

1 Rocon et al. (2007) 0 10 203 5 5 5.0 3 9
2 Martinez et al. (2008) 1 0 30 3 2 0.3 2 4
3 Miller and Rosen (2010) 6 0 28 5 4 1.0 3 6
4 Yu and Rosen (2010) 0 0 47 5 1 1.5 5 6
5 Kim et al. (2012) 10 0 46 5 4 2.1 3 7
6 Huang et al. (2012) 11 22 21 5 5 0.4 2 6
7 Miller and Rosen (2010) 5 0 9 5 4 0.2 2 6
8 Pearce et al. (2012) NA NA 26 3 NA 1.2 5 6
9 Song et al. (2012) 1 0 11 5 2 0.2 3 5

10 Kim et al. (2013) 0 15 73 5 5 1.9 4 8
11 Lin et al. (2013a) 0 0 33 5 1 2.3 4 6
12 Guo et al. (2013) 0 0 13 5 1 1.2 2 5
13 Lin et al. (2013b) 0 0 0 5 1 0.5 1 4
14 Song et al. (2013) 1 0 2 5 2 0.6 4 6
15 Wei et al. (2013) 0 0 10 5 1 1.1 3 5
16 Noveanu et al. (2013) NA NA 4 5 NA 0.6 2 5
17 Giberti et al. (2014) 0 0 1 5 2 1.1 3 6
18 Song et al. (2014) 3 0 22 5 3 1.7 4 7
19 Dowling et al. (2014) 12 0 18 3 5 0.8 2 5
20 Xiao et al. (2014) 1 0 10 3 2 1.6 3 5
21 Andrikopoulos et al. (2015) 1 0 4 3 2 1.6 3 5
22 Nimawat and Jailiya (2015) NA NA 1 3 NA 1.5 2 4
23 Shull and Damian (2015) NA NA 38 5 NA 3.2 5 9
24 Nycz et al. (2015) 1 0 6 3 1 1.7 2 4
25 Kim and Rosen (2015) 10 0 7 5 4 2.1 5 8
26 Polygerinos et al. (2015) 1 0 214 5 2 5.0 5 9
27 Tageldeen et al. (2016) 0 0 1 3 1 2.1 3 5
28 Gao et al. (2016) 0 0 0 3 1 2.0 0 3
29 Nycz et al. (2016) 0 0 15 5 2 2.6 4 7
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30 Guo et al. (2016) 0 0 0 5 1 2.0 3 6
31 Frisoli et al. (2016) NA NA 1 3 NA 2.1 3 5
32 Alavi et al. (2017) 1 0 0 5 2 2.5 4 7
33 Freer et al. (2017) 9 0 0 5 4 2.5 2 7
34 Gandolla et al. (2017) 3 0 0 3 3 2.5 2 5
35 Tu et al. (2017a) 3 0 0 5 3 2.5 4 7
36 Xiao et al. (2017) 0 0 0 5 1 2.5 2 5
37 Tu et al. (2017b) 1 0 0 5 2 2.5 4 7

Q1 – 5 points if indexed by Institute for Scientific Information (ISI) Thomson Reuters/ 3 points if indexed
by other International Data Bases (IDB)

Q2 – number of citations per year pondered through the year of publication (described in section Methods
of article’s body text)

Q3* – number of human subjects included in the study, as follows:

No. of human subjects Q3 score
0 healthy subjects/ 0 pacients 1
1 healthy subject/ 0 pacients 2
2–4 healthy subjects/ 1 – 2 pacients 3
5–10 healthy subjects/ 3 – 5 pacients 4
>10 healthy subjects/ >5 patients 5

Table S2. Q3 score based on number of human subjects/ pacients

* This criterion does not apply to review articles: for such papers we considered the other three criteria,
following the same calculation formula.

Q4 – the references’ quality, as follows:

No. of references Q4 score
0 0

1–10 1
11–20 2
21–30 3
31–40 4
> 41 5

Table S3. Q4 score based on number of references

The total score of an article is obtained as the average of the points for each criterion multiplied by 2 (in
order to range the maximal score up 10).

The PEDro inspired scoring primary data results have been statistically analyzed in table S4.
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Modal Value 5
Average 5.95
Median 6

Dispersion 1.81
Standard deviation 1.5

Coefficient of variation 25.23
Pearson asymmetry coefficient 0.63

Table S4. Statistical analysis of the results
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APPENDIX 2 MOBILE (WEARABLE AND/OR PORTABLE) PROTOTYPE DEVICES

Name and citation Year Brief description
The Motorized Upper-Limb
Orthotic System (MULOS)
(Johnson et al., 2001)

2001 With 5 DOFs and attachable to a wheelchair, this prototype has
multiple uses, including motorized assistance for severe disability,
continuous passive motion and exercise device.

Soft Robotic Exoskeleton
(SRE) (Caldwell et al.,
2007)

2003 Weighing no more than 2 kg, this upper arm exoskeleton system
has 7 DOFs by using rigid lightweight aluminium links combined
with pneumatic muscle actuators.

MAHI (Mechatronics and
Haptic Interfaces lab) EXO-
II (Gupta and O’Malley,
2006)

2004 Having 4 active DOFs and 1 passive DOF, the robot is suitable
for clinical usage by availing redundant safety measures, high
accuracy quadrature encoders and reduced transmission rates.
It is controlled by a computer running Simulink and Quark, thus
reaching a command frequency of 1KHz.

ASSIST (Sasaki et al., 2005) 2005 Using two pneumatic soft actuators for palm and arm movement,
this prototype targets elderly people/ those who need to be under
care.

Robotic Upper Extremity
Repetitive Trainer/Therapy
(RUPERT) IV (Kim et al.,
2013; Tu et al., 2017a,b)

2005 RUPERT IV prototype has 5 actuated DOFs and uses iterative
learning combined with a PID-based feedback controller in order
to adapt to non-linear aspects generated by different patients
performing various tasks.

Wearable Orthosis for
Tremor Assessment and
Suppression (WOTAS)
(Rocon et al., 2007; Freer
et al., 2017)

2007 Based on multiple types of sensors, including EMG, this prototype
consists of a wearable orthosis designed to reduce tremor.

Muscle Assistant System
(MAS) (Ding et al., 2008)

2008 The prototype has a modular design combining posture
measurement with muscle force estimation and power-assisting
devices in a 4 DOFs structure. Unlike exoskeleton devices, the
proposed prototype has no rigid frames and uses pneumatic
actuators.

Hybrid system (Varoto et al.,
2008)

2008 The elbow, wrist and hand prototype can be mounted on a
wheelchair and is voice controlled directly by the patient

Upper Extremity
Exoskeleton (Moubarak
et al., 2009)

2009 Mounted on wheelchair, the proposed robot exoskeleton has 4
motorized DOFs commanded by a Dspace controller connected to
Matlab/ Simulink using ControlDesk interface. In order to close
the control loop, the device uses force sensors.

Exoskeleton Robot
(ExoRob) (Rahman et al.,
2010)

2009 A 2DOF wrist aluminium exoskeleton robot using DC motors that
is worn on the lateral side and to help the pacient perform flexion/
extension

NEUROExos (Vitiello et al.,
2013)

2009 This cable-driven elbow exoskeleton uses a remotely placed
control unit equipped with two antagonist muscle-like hydraulic
actuators
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Motion Assistive
Exoskeleton-robot for
Superior Extremity (ETS-
MARSE) (Rahman et al.,
2010)

2010 Using a 7 DOFs exoskeleton, the proposed solution is controlled
by using EMG signals in order to help patients in their daily
routine.

Upper-limb power-assist
exoskeleton robot (Kiguchi
et al., 2008)

2010 Mounted on a wheelchair, the exoskeleton has 4-DOF power
actuation and allows several rehabilitative motions such as:
shoulder vertical/ horizontal flexion/ extension, elbow flexion/
extension and wrist supination/ pronation

OrthoJacket (Schill et al.,
2011)

2010 Powered by hidraulic actuators, the ”non-invasive modular
hybrid neuro-orthosis” combines sensoritics with advanced signal
processing techniques in order to identify patient intention and
provide support

euro Exos (Lenzi et al.,
2011)

2011 Includes a moving cylinder, micro compressor and controller. The
torsion springs are mounted on the joints of each finger in order to
provide assistive force. Each finger is driven by steel wire tendons
which are supported by lightweight pulleys

Upper limb’s motion
tracking exoskeleton device
(Song and Guo, 2011)

2011 Designed for home use, the 3 DOF exoskeleton device tracks the
patient’s movement by using an inertia sensor and is actuated by
a DC motor.

BMI-based occupational
therapy assist suit (BOTAS)
(Sakurada et al., 2013)

2013 Even if it requires a computer connection in order to process the
EEG signal, the device is fully wearable and uses a LED based
system for signaling goal achievements (grasping and extension)

Upper-limb exoskeleton
rehabilitation device
(ULERD) (Song et al.,
2014)

2013 ULERD focuses on passive and resistance training by using 3
active DOFs and 4 passive DOFs controlled by a pulley system
and three DC motors.

Wrist Gimbal (Martinez
et al., 2013)

2013 Using a simple arm rest with padding and straps, rubber hard
stops on each axis and a simple design gives the 3 active DOFs
exoskeleton prototype robustness and mechanical rigidity in a safe
and practical manner for forearm and wrist rehabilitation.

Upper limb exoskeleton
(UL-EXO7) (Kim et al.,
2013; Miller and Rosen,
2010; Yu and Rosen, 2010)

2013 This wearable 7 DOF Upper Limb Exoskeleton Robot uses a PID
controlled articulation that enables a range-of-motion reaching
99%.

6DOF Robotic system
(Noveanu et al., 2013)

2013 This 6DOF prototype introduces the usage of “smart fluids”:
electrorheological fluid (ERF) or magnetorheological fluid (MRF)
for designing and implementing new robust braking systems.

Isolated Orthosis for Thumb
Actuation (IOTA) (Aubin
et al., 2013)

2013 The prototype consistes of a 2 DOF thumb exoskeleton used in
”pediatric at-home rehabilitation”

Upper limb exoskeleton
(Garrido et al., 2014)

2014 The prototype has a modular structure and uses revolute joints in
order to achieve the 4 DOFs required for arm rehabilitation
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6-DOF exoskeleton (Chen
et al., 2014)

2014 The prototype mechanism consists of multiple gear (straight and
bevel) and support rings actuated through parallel joints in order
to assist and analyze the patient’s movement.

Shoulder exoskeleton
(Giberti et al., 2014)

2014 This hybrid structure characterized by a double parallel
mechanism consists of a first platform fixed onto the body, near
to the neck, a medium platform and a last platform. The actuators
were chosen with a light weight in mind so that the whole system
will not exceed 3 kg.

Soft robotic glove
(Polygerinos et al., 2015)

2014 This orthotic device is actuated by using a hydraulic muscle like
cylinders in order to perform several rehabilitation movements
placed on a waist belt.

BCI-driven exoskeleton
(Xiao et al., 2014)

2014 The 4 DOF exoskeleton is controlled by using a EEG based device
(BCI) in order to assist the patient.

Wearable exoskeleton
robotic hand/arm (Lee,
2014)

2014 The 9 DOF robotic hand/arm exoskeleton is ultra light (300g) and
combines electrical with mechanical (springs) actuators.

Robotic Arm Orthosis
(RAO) (Looned et al., 2014)

2014 The system consists of a wearable hybrid prototype combining an
elbow, wrist and hand robotic exoskeleton device with FES and
BCI.

Six-degrees-of-freedom
upper-limb exoskeleton
robot (6-REXOS)
(Gunasekara et al., 2015)

2015 The prototype focuses on improving the pHRI (physical human-
robot interaction) by using 4 active rotational DOFs and 2 passive
translational DOFs, thus ensuring movement redundancy and
reduced misalignments.

EXOskeletal WRIST
(EXOWRIST)
(Andrikopoulos et al.,
2015)

2015 Involves pneumatic muscle actuators. This stands for the reliability
and portability of robust robotic solutions for wrist rehabilitation.
This approach enables two DOFs movements to be performed:
extension/ flexion and ulnarradial deviation. It can be successfully
integrated into a lot of rehabilitation exoskeletal concepts for the
assisted movement of the upper limb

Soft glove and sleeve (Nycz
et al., 2015)

2015 The prototype is constructed as a soft glove and sleeve that assists
the patient’s finger and elbow movements by using tendon-like
actuated cables.

EMG-based upper limb
exoskeleton (Tageldeen
et al., 2016)

2016 The centerpiece of this prototype is a fuzzy controller based on
torque estimation techniques. By providing an interactive gaming
software environment, this prototype assists and engages patients
in order to increase the rehabilitation efficiency.

Cable-driven upper limb
exoskeleton (CABexo)
(Xiao et al., 2017)

2017 The 6-DOF wearable system uses a complex structure of epicyclic
gear trains controlled by cables.

BRIDGE exoskeleton
(Gandolla et al., 2017)

2017 The light wearable exoskeleton has 5 DOFs controlled directly
by the patient and is an extension of the passive MUNDUS
exoskeleton that can be mounted on wheelchairs.
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